A Robust Distance Measure for the Retrieval of Video Objects
نویسندگان
چکیده
In this paper, we propose a new method for measuring the similarity between two arbitrarily shaped video objects. Our method is based on comparing the low-level still features of the representative planes of video objects. We demonstrate the performance of the proposed method in a shape retrieval system in which boundaryand region-based still shape features were employed to retrieve video objects. The experimental results show that i) the retrieval performance using the proposed similarity matching technique significantly outperforms the commonly used feature vector averaging technique and ii) the distance measure performs robustly when the content of the object changes in time.
منابع مشابه
An Effective Approach for Robust Metric Learning in the Presence of Label Noise
Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...
متن کاملRobust multiplicative video watermarking using statistical modeling
The present paper is intended to present a robust multiplicative video watermarking scheme. In this regard, the video signal is segmented into 3-D blocks like cubes, and then, the 3-D wavelet transform is applied to each block. The low frequency components of the wavelet coefficients are then used for data embedding to make the process robust against both malicious and unintentional attacks. Th...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملA NEURO-FUZZY GRAPHIC OBJECT CLASSIFIER WITH MODIFIED DISTANCE MEASURE ESTIMATOR
The paper analyses issues leading to errors in graphic object classifiers. Thedistance measures suggested in literature and used as a basis in traditional, fuzzy, andNeuro-Fuzzy classifiers are found to be not suitable for classification of non-stylized orfuzzy objects in which the features of classes are much more difficult to recognize becauseof significant uncertainties in their location and...
متن کاملMotion Activity Based Semantic Video Similarity Retrieval
Semantic feature extraction of video shots and fast video sequence matching are important and required for efficient retrieval in a large video database. In this paper, a novel mechanism of similarity retrieval is proposed. Similarity measure between video sequences considering the spatio-temporal variation through consecutive frames is presented. For bridging the semantic gap between low-level...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002